The European Robotic Arm: A High-Performance Mechanism Finally on its way to Space
نویسنده
چکیده
This paper describes the design and qualification of the European Robotic Arm (ERA), which is planned to be launched by the end of 2015. After years of changes, a shift of launcher and new loads, launch preparation is underway. The European Robotic Arm ERA has been designed and manufactured by Dutch Space and its subcontractors such as Astrium, SABCA and Stork with key roles for the mechanical aspects. The arm was originally designed to be launched by the STS (mounted on a Russian module for the ISS) in 2001. However, due to delays and the STS disaster, a shift was made to the Russian Proton rocket. ERA will be launched on the Multipurpose Laboratory Module (MLM). This module, which is now planned for launch to the ISS in 2015, will carry the ERA. The symmetrical design of the arm with a complete 3 degree-offreedom wrist and general-purpose end effector on both sides, allows ERA to relocate on the station by grappling a new base point and releasing the old one, and move to different working locations. ERA Overall Design Description The arm consists of 2 limbs which are connected by motorized hinges. The arm has an end effector which has the possibility of grabbing Space Station components for transport or tools for support of EVA activity. This end effector includes other features such as electrical connections and a mechanical drive that can operate like a wrench tool. The arm is symmetrically designed, meaning that the arm shoulder joints and wrist joints are identical. This allows the arm to “walk” fully autonomously from base point to base point on part of the ISS. This “walking” arm capability allows it to reach remote grapple points. The arm structural capability enables it to move 8000-kg payloads. The arm is controlled by an integrated computer and has a camera vision system for close proximity operations and can provide camera images of the working area. Figure 1. Overall ERA arm architecture * Dutch Space BV, Leiden, The Netherlands Proceedings of the 42 Aerospace Mechanisms Symposium, NASA Goddard Space Flight Center, May 14-16, 2014 wrist elbow
منابع مشابه
Gravity-Compensated Robust Control for Micro-Macro Space Manipulators During a Rest to Rest Maneuver
Many space applications require robotic manipulators which have large workspace and are capable of precise motion. Micro-macro manipulators are considered as the best solution to this demand. Such systems consist of a long flexible arm and a short rigid arm. Kinematic redundancy and presence of unactuated flexible degrees of freedom, makes it difficult to control micro-macro manipulators. This ...
متن کاملExperimental Identification and Hybrid PID-Fuzzy Position Control of Continuum Robotic Arms
Continuum robotic arms that are inspired from nature, have many advantages compared to traditional robots, which motivate researchers in this field. Dynamic modeling and controlling these robots are challenging subjects due to complicated nonlinearities and considerable uncertainties existing in these structures. In this paper, first a dynamic three-dimensional model of the continuum robotic ar...
متن کاملA scalarization-based method for multiple part-type scheduling of two-machine robotic systems with non-destructive testing technologies
This paper analyzes the performance of a robotic system with two machines in which machines are configured in a circular layout and produce non-identical parts repetitively. The non-destructive testing (NDT) is performed by a stationary robotic arm located in the center of the circle, or a cluster tool. The robotic arm integrates multiple tasks, mainly the NDT of the part and its transition bet...
متن کاملControl of a 2-DoF robotic arm using a P300-based brain-computer interface
In this study, a novel control algorithm, based on a P300-based brain-computer interface (BCI) is fully developed to control a 2-DoF robotic arm. Eight subjects including 5 men and 3 women perform a 2-dimensional target tracking in a simulated environment. Their EEG (Electroencephalography) signals from visual cortex are recorded and P300 components are extracted and evaluated to perform a real...
متن کاملImprovement of position measurement for 6R robot using magnetic encoder AS5045
Recording the variation of joint angles as a feedback to the control unit is frequent in articulated arms. In this paper, magnetic sensor AS5045, which is a contactless encoder, is employed to measure joint angles of 6R robot and the performance of that is examined. The sensor has a low volume, two digital outputs and provides a high resolution measurement for users; furthermore its zero positi...
متن کامل